Devoir n°1 - Suites - TSpé maths

28 septembre 2020 - 1h15

Exercice 1 (4,5 pts) : Dans chaque cas, déterminer la limite de la suite (u_n) .

1.
$$u_n = \frac{-2n^3 - 5n + 1}{3n^2 - 1} \ (n \in \mathbb{N})$$

$$2. \ u_n = -3n - \sin n \quad (n \in \mathbb{N})$$

3.
$$u_n = \frac{(-1)^n}{n^2} + 2 \quad (n \in \mathbb{N}^*)$$

Exercice 2 (8,5 pts): Soit la suite (u_n) définie par $u_0 = 2$ et pour tout entier naturel n:

$$u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1$$

- 1. Calculer u_1 et u_2 ; en déduire une conjecture sur le sens de variation de la suite (u_n) .
- 2. a) Démontrer, par récurrence, que pour tout entier naturel $n: u_n \leq n+3$
 - b) Montrer que pour tout entier naturel n,

$$u_{n+1} - u_n = \frac{1}{3}(n+3-u_n)$$

En déduire le sens variation de la suite (u_n) .

- 3. On désigne par (v_n) , la suite définie pour tout entier naturel n par $v_n = u_n n$.
 - a) Montrer que la suite (v_n) est une suite géométrique de raison $\frac{2}{3}$.
 - b) En déduire une expression de v_n en fonction de n, puis justifier que, pour tout entier naturel n, on a :

$$u_n = 2(\frac{2}{3})^n + n$$

c) Déterminer la limite de la suite (u_n) .

Exercice 3 (7 pts): Soit la suite (u_n) définie par $u_0 = 0, 7$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{3u_n}{1 + 2u_n} = f(u_n)$$

où f est la fonction définie sur $[0 ; +\infty[$ par $f(x) = \frac{3x}{1+2x}$.

- 1. Etudier les variations de f est sur $[0; +\infty[$.
- 2. Démontrer, par récurrence, que, pour tout entier naturel $n, 0 \le u_n \le u_{n+1} \le 1$
- 3. En déduire les variations de la suite (u_n) , et justifier que la suite (u_n) converge.
- 4. On note ℓ la limite de la suite (u_n) . On admet que ℓ vérifie $\ell = f(\ell)$. Déterminer la limite ℓ .

Exercice 4 (Bonus): Soit la suite (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = u_n + 3^n - 7$$

On considère la suite auxiliaire (v_n) telle que, pour tout entier naturel $n, v_n = u_{n+1} - u_n$. On pose $S_n = v_0 + v_1 + ... + v_{n-1}$ pour tout $n \in \mathbb{N}$

- 1. Calculer cette somme de deux manières différentes. (en fonction de u_n , puis en fonction de n)
- 2. En déduire l'expression de u_n en fonction de n.