Devoir nº3 - Continuité et Dérivabilité - TSpé maths

19 novembre 2020 - 1h

Exercice 1 (5 pts): Soit la fonction f définie sur \mathbb{R}^* par

$$f(x) = \begin{cases} \frac{1}{2}\sqrt{x^2 + 3} & \text{si } x > 1\\ \frac{1}{x} & \text{pour } x < 0 \text{ et } 0 < x \le 1 \end{cases}$$

- 1. La fonction f est-elle continue sur $]-\infty;0[$ et sur $]0;+\infty[$?
- 2. La fonction f est-elle dérivable sur $\mathbb{R}*$?

Exercice 2 (15 pts) : Partie A : Soit la fonction g définie sur \mathbb{R} par

$$g(x) = 4x^3 - 3x - 8$$

- 1. Etudier le sens de variation de q sur \mathbb{R} .
- 2. Démontrer que l'équation q(x) = 0 admet une unique solution dans \mathbb{R} que l'on note α . Déterminer un encadrement de α d'amplitude 10^{-2} .
- 3. Déterminer le signe de g sur \mathbb{R} .

Partie B: Soit la fonction f définie sur $]\frac{1}{2}; +\infty[$ par

$$f(x) = \frac{x^3 + 1}{4x^2 - 1}$$

On note C_f la courbe représentative de f.

- 1. a) Déterminer la limite de f en $+\infty$.
 - b) Déterminer la limite de f en $\frac{1}{2}$; que peut-on en déduire pour la courbe C_f ?
- 2. a) Calculer f'(x) et vérifier que $f'(x) = \frac{xg(x)}{(4x^2 1)^2}$.
 - b) Dresser le tableau de variations de f.
- 3. En utilisant la définition de α , montrer que $f(\alpha) = \frac{3}{8}\alpha$; en déduire un encadrement de $f(\alpha)$ à 10^{-2} .

Que du Bonus

Partie C: On souhaite déterminer un encadrement de α par balayage. Parmi les 3 algorithmes suivants, un seul fonctionne; préciser lequel et pourquoi.

```
Programme 1
```

Partie D: Soit \mathcal{D} la droite d'équation $y = \frac{1}{4}x$. (on pourra s'aider de la calculatrice)

- 1. Conjecturer les positions relatives de \mathcal{C}_f et $\mathcal{D}.$
- 2. Pour tout réel $x > \frac{1}{2}$, on considère les points M et N d'abscisses x respectivement sur \mathcal{C}_f et \mathcal{D} . Que peut-on conjecturer sur la distance MN lorsque x tend vers $+\infty$?
- 3. Démontrer les conjectures précédentes.