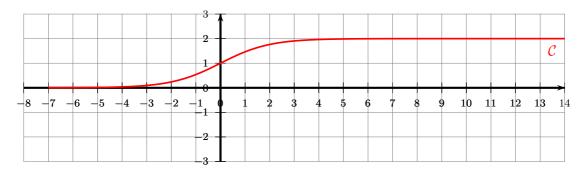
Devoir nº4 - Fonction Exponentielle - TSpé maths

3 décembre 2020 - 1h

Exercice 1 (8 pts) : On désigne par f la fonction définie sur l'intervalle [-2; 4] par

$$f(x) = (2x+1)e^{-2x} + 3$$

- 1. Déterminer f' la fonction dérivée de f sur [-2; 4].
- 2. Dresser le tableau de variations de f.
- 3. On note f'' la fonction dérivée de f' sur [-2; 4]. Montrer que


$$f''(x) = (8x - 4)e^{-2x}$$

- 4. Étudier le signe de f'' et en déduire la convexité de f.
- 5. On note \mathcal{C} la courbe représentative de la fonction f. La courbe \mathcal{C} admet-elle un point d'inflexion? Si oui, donner ses coordonnées.

Exercice 2 (12 pts) : On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = \frac{2e^x}{e^x + 1}.$$

On donne ci-dessous la courbe représentative \mathcal{C} de la fonction f dans un repère orthonormé.

- 1. Calculer la limite de la fonction f en $-\infty$ et interpréter graphiquement le résultat.
- 2. Montrer que la droite d'équation y=2 est asymptote horizontale à la courbe \mathcal{C} .
- 3. Calculer f'(x), f' étant la fonction dérivée de f, et donner les variations de la fonction f sur \mathbb{R} .
- 4. Déterminer l'équation de (T) la tangente à la courbe \mathcal{C} au point A(0; 1).
- 5. On veut étudier la position relative de la courbe \mathcal{C} et de la tangente (T).
 - a) Montrer que $f(x) (\frac{1}{2}x + 1) = \frac{g(x)}{2(e^x + 1)}$ où g est la fonction définie sur \mathbb{R} par $g(x) = 2e^x xe^x x 2$.
 - b) On admet que g est deux fois dérivable sur \mathbb{R} avec $g'(x) = e^x xe^x 1$ et $g''(x) = -xe^x$.
 - i. Déterminer le signe de g''(x) et en déduire les variations de la fonction g'.
 - ii. Déterminer le signe de g'(x) et en déduire les variations de la fonction g.
 - iii. Calculer g(0) et en déduire le signe de g(x) sur \mathbb{R} .
 - c) Déduire des questions précédentes la position relative de la courbe \mathcal{C} et de la tangente (T). Que peut-on dire du point A?