Devoir nº11 - Fonctions - Suites - TSpé

29 février 2024 - 45 min

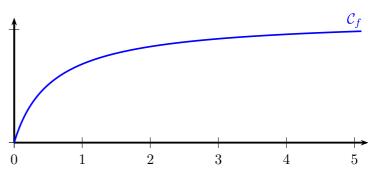
Exercice 1 (Nouvelle-Calédonie nov 2019 - 10 pts) :

On considère la fonction f définie sur $[0; +\infty[$ par

$$f(x) = \ln\left(\frac{3x+1}{x+1}\right).$$

On admet que la fonction f est dérivable sur $[0; +\infty[$ et on note f' sa fonction dérivée.

On note C_f la courbe représentative de la fonction f dans un repère orthogonal.



Partie A

- 1. Déterminer $\lim_{x\to +\infty} f(x)$ et en donner une interprétation graphique.
- 2. a) Déterminer f'(x) pour tout nombre réel x positif ou nul.
 - b) En déduire les variations de la fonction f.

Partie B

Soit (u_n) la suite définie par

 $u_0 = 3$ et, pour tout entier naturel n, $u_{n+1} = f(u_n)$.

- 1. Démontrer par récurrence que, pour tout entier naturel n, $\frac{1}{2} \leqslant u_{n+1} \leqslant u_n$.
- 2. Démontrer que la suite (u_n) converge vers une limite strictement positive.

Partie C

On note ℓ la limite de la suite (u_n) . On admet que $f(\ell) = \ell$.

L'objectif de cette partie est de déterminer une valeur approchée de ℓ .

On introduit pour cela la fonction g définie sur $[0; +\infty[$ par g(x) = f(x) - x.

On donne ci-dessous le tableau de variations de la fonction g sur $[0; +\infty]$ où

 $x_0 = \frac{-2 + \sqrt{7}}{3} \approx 0,215$ et $g(x_0) \approx 0,088$, en arrondissant à 10^{-3} .

x	$0 x_0 +\infty$
Variations de la fonction g	$0 \qquad \qquad \int_{-\infty}^{g(x_0)}$

- 1. Démontrer que l'équation g(x)=0 admet une unique solution strictement positive. On la note α .
 - a) Recopier et compléter l'algorithme ci-contre afin que la dernière valeur prise par la variable x soit une valeur approchée de α par excès à 0,01 près.
 - b) Donner alors la dernière valeur prise par la variable x lors de l'exécution de l'algorithme.

 $x \leftarrow 0,22$ Tant quefaire $x \leftarrow x + 0,01$ Fin de Tant que

3. En déduire une valeur approchée à 0,01 près de la limite ℓ de la suite (u_n) .