Devoir nº14 - Intégration - TSpé

29 avril 2024 - 1h

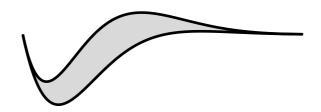
Exercice 1 (6 pts) : Calculer la valeur exacte des intégrales suivantes :

$$I = \int_{-1}^{0} \frac{1}{(3x-1)^3} dx$$

$$J = \int_{0}^{2} 4(2x+1)e^{x^2+x-1} dx$$

$$K = \int_2^4 x^2 \ln x \, dx$$
 (par intégration par parties)

Exercice 2 (14 pts) : Un publicitaire souhaite imprimer le logo ci-dessous sur un T-shirt :



Il dessine ce logo à l'aide des courbes de deux fonctions f et g définies sur \mathbb{R} par :

$$f(x) = e^{-x}(-\cos x + \sin x + 1)$$
 et $g(x) = -e^{-x}\cos x$

On admet que les fonctions f et g sont dérivables sur \mathbb{R} .

Partie A - Étude de la fonction f:

- 1. Justifier que, pour tout $x \in \mathbb{R} : -e^{-x} \leq f(x) \leq 3e^{-x}$.
- 2. En déduire la limite de f en $+\infty$.
- 3. Démontrer que, pour tout $x \in \mathbb{R}$, $f'(x) = e^{-x}(2\cos x 1)$ où f' est la fonction dérivée de f.
- 4. Dans cette question, on étudie la fonction f sur l'intervalle $[-\pi; \pi]$.
 - a) Déterminer le signe de f'(x) pour x appartenant à l'intervalle $[-\pi; \pi]$.
 - b) En déduire les variations de f sur $[-\pi ; \pi]$.

Partie B - Aire du logo : On note C_f et C_g les représentations graphiques des fonctions f et g dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$. L'unité graphique est de 2 centimètres.

- 1. Étudier la position relative de la courbe C_f par rapport à la courbe C_g sur \mathbb{R} .
- 2. Soit H la fonction définie sur $\mathbb R$ par :

$$H(x) = \left(-\frac{\cos x}{2} - \frac{\sin x}{2} - 1\right)e^{-x}$$

On note \mathcal{D} le domaine délimité par la courbe \mathcal{C}_f , la courbe \mathcal{C}_g et les droites d'équations $x=-\frac{\pi}{2}$ et $x=\frac{3\pi}{2}$.

- a) Montrer que H est une primitive de la fonction $x \mapsto (\sin x + 1)e^{-x}$ sur \mathbb{R} .
- b) Hachurer le domaine \mathcal{D} sur le graphique.
- c) Calculer, en unité d'aire, l'aire du domaine \mathcal{D} , puis en donner une valeur approchée à 10^{-2} près en cm².

