Devoir nº15 - Intégration - TSpé

6 mai 2024 - 1h

Exercice 1 (6 pts) : Calculer la valeur exacte des intégrales suivantes :

$$I = \int_{1}^{2} \frac{6x}{(x^{2} + 4)^{4}} dx$$

$$J = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{-\cos x}{\sin x} dx$$

$$K = \int_{-1}^{1} 3x e^{2x} dx \quad \text{(par intégration par parties)}$$

Exercice 2 (14 pts) : On considère la suite (I_n) définie par

$$I_0 = \int_0^{\frac{1}{2}} \frac{1}{1-x} \, dx$$

et pour tout entier naturel n non nul, $I_n = \int_0^{\frac{1}{2}} \frac{x^n}{1-x} dx$

- 1. a) Montrer que $I_0 = \ln(2)$.
 - b) Calculer $I_0 I_1$ et en déduire I_1 .
- 2. a) Montrer que, pour tout $n \in \mathbb{N}$, on a $I_n I_{n+1} = \frac{\left(\frac{1}{2}\right)^{n+1}}{n+1}$; en déduire le sens de variation de la suite (I_n) .
 - b) Montrer que, pour tout $n \in \mathbb{N}$, on a $0 \leq I_n$; en déduire que la suite (I_n) converge.
- 3. Soit n un entier naturel non nul. On admet que si $x \in [0; \frac{1}{2}]$ alors $0 \le \frac{x^n}{1-x} \le \frac{1}{2^{n-1}}$.
 - a) Montrer que pour tout entier naturel n non nul, $0 \le I_n \le \frac{1}{2^n}$.
 - b) En déduire la limite de la suite (I_n) lorsque n tend vers $+\infty$.
- 4. Pour tout entier naturel n non nul, on pose

$$S_n = \frac{1}{2} + \frac{\left(\frac{1}{2}\right)^2}{2} + \frac{\left(\frac{1}{2}\right)^3}{3} + \dots + \frac{\left(\frac{1}{2}\right)^n}{n}.$$

- a) Montrer que pour tout entier naturel n non nul, $S_n = I_0 I_n$.
- b) Déterminer la limite de S_n lorsque n tend vers $+\infty$.