Devoir nº4 - Suites et Fonctions - TS

25 octobre 2023 - 1h20 min

Exercice 1 (5 pts) : Déterminer la limite de chaque fonction à l'endroit indiqué, et préciser l'asymptote s'il y a lieu.

$$f_1(x) = \frac{-3x + 4x^3}{3x^3 + x - 3}$$
; en $-\infty$

$$f_2(x) = \sqrt{2x+3} - \sqrt{2x+1}$$
; en $+\infty$

$$f_3(x) = \frac{2\sin(x) + x + 1}{x}$$
; en $-\infty$

Exercice 2 (12 pts) : On considère la suite (u_n) définie par $u_0 = 8$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{6u_n + 2}{u_n + 5}.$$

- 1. Calculer u_1 .
- 2. Soit f la fonction définie sur l'intervalle $[0; +\infty[$ par $: f(x) = \frac{6x+2}{x+5}$ Ainsi, pour tout entier naturel n, on a $: u_{n+1} = f(u_n)$.
 - a) Démontrer que la fonction f est strictement croissante sur l'intervalle $[0; +\infty[$.
 - b) Démontrer par récurrence que, pour tout entier naturel n, on a $u_n > 2$.
- 3. On admet que, pour tout entier naturel n, on a :

$$u_{n+1} - u_n = \frac{(2 - u_n)(u_n + 1)}{u_n + 5}$$

- a) Démontrer que la suite (u_n) est décroissante.
- b) En déduire que la suite (u_n) est convergente.
- 4. On définit la suite (v_n) pour tout entier naturel par : $v_n = \frac{u_n 2}{u_n + 1}$
 - a) Calculer v_0 .
 - b) Démontrer que (v_n) est une suite géométrique de raison $\frac{4}{7}$.
 - c) Déterminer, en justifiant, la limite de (v_n) . En déduire la limite de (u_n) .
- 5. On considère la fonction Python seuil ci-contre, où A est un nombre réel strictement plus grand que 2.

Donner, sans justification, la valeur renvoyée par la commande seuil (2.001) puis interpréter cette valeur dans le contexte de l'exercice.

def seuil (A):

$$n = 0$$

 $u = 8$
while $u > A$:
 $u = (6*u + 2)/(u + 5)$
 $n = n + 1$
return n

Exercice 3 (4 pts) : Dans tout ce qui suit, m désigne désigne un nombre réel quelconque.

Partie A : Soit f la fonction définie et dérivable sur \mathbb{R} par : $f(x) = (x+1)e^x$

- 1. Calculer la limite de f en $+\infty$ et en $-\infty$.
- 2. Déterminer f' la fonction dérivée de la fonction f.
- 3. Dresser le tableau de variations de f.

Partie B (Bonus) : On définit la fonction g_m sur \mathbb{R} par $g_m(x) = x + 1 - me^{-x}$. et on note C_m la courbe de la fonction g_m dans un repère du plan.

- 1. a) Démontrer que $g_m(x) = 0$ si, et seulement si, f(x) = m.
 - b) Déduire de la partie A, sans justification, le nombre de points d'intersection de la courbe C_m avec l'axe des abscisses en fonction de m.
- 2. Etudier la position relative de la courbe C_m par rapport à la droite D d'équation y = x + 1 suivant les valeurs de m.