Devoir nº5 - Continuité - TVI - TSpé

27 novembre 2023 - 2h

Exercice 1 (4 pts) : Soit la fonction f définie sur \mathbb{R} par :

$$f(x) = \begin{cases} x^2 - 4 & \text{si } x \le 2\\ \sqrt{x - 2} & \text{si } x > 2 \end{cases}$$

- 1. La fonction f est-elle continue sur \mathbb{R} ?
- 2. La fonction f est-elle dérivable sur \mathbb{R} ?

Exercice 2 (5 pts) : Soit la suite (u_n) définie par :

$$\begin{cases} u_0 = 4 \\ u_{n+1} = \frac{u_n^2}{5} & \text{pour tout entier } n \in \mathbb{N} \end{cases}$$

Et soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{x^2}{5}$.

- 1. a) Etudier les variations de la fonction f sur \mathbb{R} .
 - b) Résoudre l'équation f(x) = x.
- 2. Montrer par récurrence que la suite (u_n) est décroissante.
- 3. Justifier que la suite (u_n) converge et déterminer sa limite.

Exercice 3 (6,5 pts):

Partie A : Soit la fonction g définie sur \mathbb{R} par

$$g(x) = -4x^3 - 3x^2 - 2$$

- 1. Déterminer les limites de g en $+\infty$ et en $-\infty$.
- 2. Etudier le sens de variation de g sur \mathbb{R} .
- 3. Montrer que l'équation g(x)=0 admet une unique solution sur $\mathbb R$ que l'on notera α . Déterminer une valeur approchée de α à 10^{-2} .
- 4. En déduire le signe de g sur \mathbb{R} .

Partie B : Soit la fonction f définie sur $I = \mathbb{R} \setminus \{1\}$ par

$$f(x) = \frac{2x+1}{x^3-1}$$

On note C_f la courbe représentative de f.

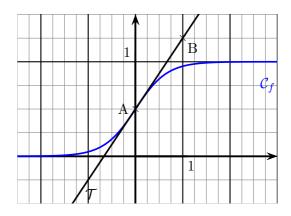
- 1. Déterminer les limites de f aux bornes de I et préciser les asymptotes (s'il y a lieu).
- 2. a) Calculer f'(x) et vérifier que $f'(x) = \frac{g(x)}{(x^3 1)^2}$.
 - b) Dresser le tableau de variations de f.

Exercice 4 (7,5 pts) : On considère la fonction f définie sur \mathbb{R} par : $f(x) = \frac{1}{1 + e^{-3x}}$.

On note C_f sa courbe représentative dans un repère orthogonal du plan.

On nomme A, le point de coordonnées $\left(0; \frac{1}{2}\right)$, et B le point de coordonnées $\left(1; \frac{5}{4}\right)$.

On a tracé ci-contre la courbe C_f et \mathcal{T} la tangente à la courbe C_f au point d'abscisse 0.



Partie A: Lectures graphiques

Dans cette partie, les résultats seront obtenus par lecture graphique. Aucune justification n'est demandée.

- 1. Déterminer l'équation réduite de la tangente \mathcal{T} .
- 2. Donner les intervalles sur lesquels la fonction f semble convexe ou concave.

Partie B: Etude de la fonction

- 1. On admet que la fonction f est dérivable sur \mathbb{R} . Déterminer l'expression de sa fonction dérivée f'.
- 2. Justifier que la fonction f est strictement croissante sur \mathbb{R} .
- 3. a) Déterminer la limite en $+\infty$ de la fonction f.
 - b) Déterminer la limite en $-\infty$ de la fonction [.
- 4. Déterminer la valeur exacte de la solution α de l'équation f(x) = 0,99.

Partie C: Tangente et convexité

1. Déterminer par le calcul une équation de la tangente \mathcal{T} à la courbe \mathcal{C}_f au point d'abscisse 0.

On admet que la fonction f est deux fois dérivable sur \mathbb{R} .

On note f'' la fonction dérivée seconde de la fonction f.

On admet que f'' est définie sur $\mathbb R$ par :

$$f''(x) = \frac{9e^{-3x} (e^{-3x} - 1)}{(1 + e^{-3x})^3}.$$

- 2. Étudier le signe de la fonction f'' sur \mathbb{R} .
- 3. a) Indiquer, en justifiant, sur quel(s) intervalle(s) la fonction f est convexe.
 - b) Que représente le point A pour la courbe C_f ?
 - c) En déduire la position relative de la tangente \mathcal{T} et de la courbe \mathcal{C}_f . Justifier la réponse.

Exercice 5 (Bonus): Soit f_k la fonction définie sur \mathbb{R} par

$$f_k(x) = e^x - kx$$

où k est un réel quelconque.

Existe-t-il un réel k tel que l'axe des abscisses soit tangent à C_k , la courbe représentative de la fonction f_k ? Si oui, déterminer k ainsi que les coordonnées du point de tangence.