Devoir $n^{\underline{o}}6$ - Ln - TSpé

14 décembre 2023 - 1h15

Exercice 1 (12 pts) : On considère la fonction f définie pour tout réel x de l'intervalle]0; $+\infty[$ par :

$$f(x) = 5x^2 + 2x - 2x^2 \ln(x).$$

On note C_f la courbe représentative de f dans un repère orthogonal du plan.

On admet que f est deux fois dérivable sur l'intervalle]0; $+\infty[$.

On note f' sa dérivée et f'' sa dérivée seconde.

- 1. a) Déterminer la limite de la fonction f en 0.
 - b) Déterminer la limite de la fonction f en $+\infty$.
- 2. Déterminer f'(x) pour tout réel x de l'intervalle]0; $+\infty[$.
- 3. a) Démontrer que pour tout réel x de l'intervalle]0; $+\infty[$,

$$f''(x) = 4(1 - \ln(x)).$$

- b) En déduire le plus grand intervalle sur lequel la courbe C_f est au-dessus de ses tangentes.
- c) Dresser le tableau des variations de la fonction f' sur l'intervalle]0; $+\infty[$. (On admettra que $\lim_{\substack{x\to 0\\x>0}} f'(x) = 2$ et que $\lim_{\substack{x\to +\infty\\x>0}} f'(x) = -\infty$.)
- 4. a) Montrer que l'équation f'(x) = 0 admet dans l'intervalle]0; $+\infty[$ une unique solution α dont on donnera un encadrement d'amplitude 10^{-2} .
 - b) En déduire le signe de f'(x) sur l'intervalle]0; $+\infty[$ ainsi que le tableau des variations de la fonction f sur l'intervalle]0; $+\infty[$.
- 5. a) En utilisant l'égalité $f'(\alpha) = 0$, démontrer que : $\ln(\alpha) = \frac{4\alpha + 1}{2\alpha}$. En déduire que $f(\alpha) = \alpha^2 + \alpha$.
 - b) En déduire un encadrement d'amplitude 10^{-1} du maximum de la fonction f.

Exercice 2 (8 pts): Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Les six questions sont indépendantes.

Chaque réponse doit être soigneusement justifiée.

- 1. On considère la fonction f définie pour tout réel x par $f(x) = \ln(1+x^2)$. Sur \mathbb{R} , l'équation f(x) = 2023
 - a. n'admet aucune solution.
- admet exactement une solution. b.
- admet exactement deux solutions.
- d. admet une infinité de solutions.
- 2. Soit la fonction g définie pour tout réel x strictement positif par : $g(x) = x \ln(x) x^2$. On note C_g sa courbe représentative dans un repère du plan.
 - **a.** La fonction g est convexe sur]0; $+\infty[$.
- **b.** La fonction g est concave sur]0; $+\infty[$.
- **c.** \mathcal{C}_g admet un seul point d'inflexion sur]0; $+\infty[$. **d.** \mathcal{C}_g admet deux points d'inflexion sur]0; $+\infty[$.
- 3. On considère la fonction f définie sur]-1; 1[par

$$f(x) = \frac{x}{1 - x^2}$$

La fonction f est dérivée de la fonction g définie sur l'intervalle]-1; 1 par :

a.
$$g(x) = \frac{x^2}{2\left(x - \frac{x^3}{3}\right)}$$
 b. $g(x) = \frac{1 + x^2}{\left(1 - x^2\right)^2}$

b.
$$g(x) = \frac{1+x^2}{(1-x^2)^2}$$

c.
$$g(x) = \frac{x^2}{2} \ln (1 - x^2)$$
 d. $g(x) = -\frac{1}{2} \ln (1 - x^2)$

d.
$$g(x) = -\frac{1}{2} \ln (1 - x^2)$$

4. La fonction $x \longmapsto \ln(-x^2 - x + 6)$ est définie sur

a.
$$]-\infty$$
; 6] **b.** $]-3$; 2[**c.** $]0$; $+\infty[$ **d.** $]2$; $+\infty[$

b.
$$]-3; 2[$$

c.
$$]0 ; +\infty[$$

d.
$$|2 ; +\infty$$

5. On considère la fonction f définie sur]0,5; $+\infty[$ par

$$f(x) = x^2 - 4x + 3\ln(2x - 1)$$

Une équation de la tangente à la courbe représentative de f au point d'abscisse 1 est :

a.
$$y = 4x - 7$$

b.
$$y = 2x - 4$$

a.
$$y = 4x - 7$$

c. $y = -3(x - 1) + 4$

d.
$$y = 2x - 1$$

6. L'ensemble S des solutions dans \mathbb{R} de l'inéquation $\ln(x+3) < 2\ln(x+1)$ est :

a.
$$S =]-\infty$$
; $-2[\cup]1$; $+\infty[$
b. $S =]1$; $+\infty[$
c. $S = \emptyset$
d. $S =]-1$; $1[$

b.
$$S = |1 : +\infty|$$

c.
$$S = \emptyset$$

d.
$$S =]-1:1$$